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to various network protocol packets.

The average packet delay under a GRA discipline is evaluated by a Markov
ratio limit theorem. To stabilize the channel, the GRA procedure is controlled
dynamically by a control policy which rejects any newly arriving packets within
certain time-periods. Studying the associated Markov decision problem, the
optimal control policy is characterized as yielding a minimal average packet
delay under a prescribed packet probability of rejection. This policy is shown
to be a single-threshold scheme for which there exists a threshold value which
attains the minimum probability of rejection. Performance curves are presented
to demonstrate the excellent delay-throughput characteristics induced by GRA
procedures.
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ABSTRACT

A Group Random-Access (GRA) access-control discipline for a multi-
access comnmunication channel is presented and studied. A GRA scheme
uses only certain channel time-periods to allow some network terminals to
transmit their information-bearing packets on a random-access basis.
The channel can thus be utilized at other times to grant access to other
terminals, or other message types, by applying, as appropriate, group
random-access, reservation or fixed access-control procedures. GRA schemes
could also be utilized to provide channel access to various network proto-
col packets.

The average packet delay under a GRA discipline is evaluated by a
Markov ratio limit theorem. To stabilize the channel, the GRA procedure
is controlled dynamically by a control policy which rejects any newly ar-
riving packets within certain time-periods. Studying the associated Markov
decision problem, the optimal control policy is characterized as yielding
a minimal average packet delay under a prescribed packet probability of
rejection. This policy is shown to be a single-threshold scheme for which
there exists a threshold value which attains the minimum probability of
rejection. Performance curves are presented to demonstrate the excellent

delay-throughput characteristics induced by GRA procedures.




[. Introduction and System Description

We consider a multi-access broadcast channel of capacity C bps
serving a network of terminals. A satellite conmunication channel, a
radio channel in a terrestrial radio network or a communication link in
a broadcast line computer communication serve as a few examples. The
channel utilizes a repeater (such as a satellite transponder or a radio
relay station) to enable each terminal in the network to communicate
(through the repeater) with any other terminal (see [1]). Messages trans-
mitted by the terminals are directed, through the channel uplink, to the
repeater. The latter then shifts the message uplink frequency-band into
a disjoint downlink frequency-band and broadcasts the messages (so that
each terminal can receive any signal reflected by the transmitter)
through the downlink channel towards the network terminals. (Note that
no schedulings for message downlink transmissions are required.)

We assume a synchronized structure. Thus, time (referenced w.r.t.
repeater's time) is divided into fixed-length durations of Tt sec. each,
called slots. An appropriate network synchronization procedure is used
to achieve network slot synchronization. Terminals will start transmissions
of messages only at times coinciding with starting times of the synchronized
time slots. The channel is characterized by a propagation delay of Rt
sec., or R slots. Propagation delays are of the order of milliseconds
for packet radio channels and around 0.25 sec. for satellite channels.

Each terminal message is considered to be described as a packet of fixed-
length of u_l bits (including protocol, information and parity-check bits).

s 2 2 . -3
acket transmission time across the channel is thus (uc) sec. We set

= () ', (1.1)
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so that a slot duration is equal to the packet transmission time.

We consider a network of M terminals. New messages arrive at the
i-th terminal, i=1,2,...,M , according to a Poisson stream of intensity
Ai . The overall network message (or packet) arrival stream is thus a

Poisson point process with intensity
A= ] A, mess./slot .

Upon the arrival of a new message, a terminal will immediately try to

gain access into the channel for this message. No terminal-buffer capacity
or blocking constraints are imposed. One can also consider a terminal to
possess buffer storage for only a single message, and subsequently to be
blocked for new arrivals when occupied. However, when the network contains
a large number of active bursty terminals, the blocking effects would be
insignificant; see [1].

To utilize efficiently the bandwidth of such a channel and grant
acceptable message response times to the terminals sharing this channel,
one needs to apply an appropriate access-control discipline. Access-control
procedures employing reservation schemes have been recently studied in [1].
Using these schemes, each terminal needs to transmit a reservation packet
to reserve a slot (or number of slots) for a newly arrived message. Assum-
ing a decentralized control mechanism, each terminal (while receiving the
broadcasted reservation packets) stores in its own queueing table the pres-
ent state of the reservation process, being subsequently able to determine
its own allocation of transmission slots. In a centralized control mode,

a central controller receives all the reservation packets and subsequently
instructs the terminals when to transmit their messages. Dynamic reserva-

tion schemes, considering single and multi-packet messages, are shown in
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[1] to vield excellent delay-throughput performance characteristics, over
the whole range of moderate to high network traffic intensity values.

For low network traffic intensity values, when single-packet highly
bursty terminal message nrocesses are considered, a better delay-throughput
performance, involving a much less sophisticated (distributed) access-
control procedure, can be achieved by a random-access mechanism. The
latter allows terminals to use the channel at any time to transmit a newly
arrived packet. If, however, two or more packets collide, the involved
messages are retransmitted following an appropriate random retransmission
delay policy. Due to the simple distributed control mechanism involved
with a random-access discipline, such a procedure can result in significant
savings in hardware requirements (such as those involving various multi-
plexing mechanisms), protocol and system complexities. (See [3] and the
references therein for the use of a random access technique in the ALOHA
computer communication system.) Furthermore, very low message-delay values
are attained when a random-access discipline is utilized, provided that
low enough throughput values are acceptable. A simple slotted random-
access procedure, called slotted ALOHA (see [3]-[8]), is noted to allow a
maximal throughput (channel traffic capacity) of 1/e = 0.368 packets/slot.
Thus, an average number of at most 0.368 packets will be successfully
transmitted through the channel (compared to a channel traffic capacity of
1 packet/slot for TDMA and reservation schemes, see [1]). We further note
that a random-access channel needs to incorporate a flow-control mechanism
to avoid instabilities.

In various actual situations, the designer is ready to accept channel

throughput values lower than 1/e , while requiring a simple distributed




access-control procedure. A random-access procedure, such as the slotted
ALOHA technique, is then an attractive choice. In many cases, one desires
to dedicate only certain portions of the channel time-frame to a family
of network terminals wishing to share the channel (during these periods)
on a random-access basis. lFor that purpose, we present and study in this
paper the Group Random Access (GRA) discipline. Under a GRA discipline,
a group of network terminals are provided with a periodic quudﬁco of
channel access periods, during which this group uses a random-access
discipline to gain access into the channel. A packet experiencing colli-
sion during a certain period will be retransmitted during the next access
period. Other groups of network terminal (distinguished by their priori-
ties, performance requirements or by the statistics and nature of their
information, emitting, for example, short-interactive or longer long-haul
messages) can share the remaining time-frame duration using again GRA
procedures or other access-control techniques.

[t is many times of particular interest to use a GRA procedure to

grant channel access to certain protocol packets. The latter packets are
usually much shorter than the message packets so that low throughput values
are acceptable. At the same time, the simle distributed-control structure
of the GRA is highly desirable. This is the case when reservation access-
control disciplines are considered and (shorter) reservation packets need

to be transmitted by the terminals (see [1]-[2]). The latter reservation
packets can be assigned periodically reservation periods during which they
use a random-access procedure to compete for channel access. This procedure
clearly results in a GRA access-control mechanism, utilized by the family

of reservation packets.




The approximate throughput and delay-throughput performance of a
regular (slotted ALOHA) random-access procedure have been studied (see
[3]-[8] and references thercin), assuming an approximating Markovian
channel state process. Certain dynamic control schemes which stabilize
the inherently unstable slotted ALOHA channel, have also been investigated
(by proposing certain threshold control schemes, not necessarily optimal,
and computing their performance through the associated dynamic-programming
equation, see [6],[8]).

In this paper, we present a precise study of the performance of a
Group Random-Access discipline and its optimal dynamic control. The
channel is controlled so that the minimal average message delay is attained,
under an appropriately prescribed packet probability of rejection. The GRA
procedure is shown to yield delay-throughput performance charac-
teristics comparable to those attained by a regular (slotted ALOHA) random-
access procedure, while providing the network designer with a much higher
degree of flixibility in granting access to different classes of informa-
tion and protocol messages.

We note that our study of the GRA procedure as an access-control dis-
cipline for a multi-access communication channel, can be readily applied
also to non-broadcast channels, where a central controller (or other means)
is incorporated to provide the terminals with the relevant (positive or
negative) acknowledgment and control information.

In Section II, we present the network performance measures and the
slotted ALOHA random access discipline. For the latter scheme, we indicate
the relevant characteristics associated with the evolution of the underlying

Markov state sequence and the computation of the packet delay function.

il
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The GRA procedure is presented in Section III, where we also derive the
characteristics of its underlving Markov state sequence and the related
formulas yvielding the average packet delayv. An optimal dynamic control
policy for a GRA channel is characterized and studied in Section IV. An
associated Markov decision problem is shown to induce an optimal control
function which yields the minimal average packet delay under a prescribed
value of probability of rejection. The resulting delay-throughput char-
acteristics of the controlled GRA channel, under the optimal single-channel
control scheme, are then indicated and demonstrated in a set of figures
presenting performance curves. The appropriate preferable structure
(threshold values) for a GRA channel controller is then noted. The con-
trolled GRA channel is shown to exhibit excellent delay vs. throughput
(or vs. probability of rejection) performance curves (even when not all
the state veriables are observable) over the whole range of acceptable

network traffic intensities (or rejection probabilities).
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[T.  Network Performance Measures and the Regular (Slotted ALOHA)

Random-Access Discipline

We consider a synchronized multi-access broadcast communication
channel of capacity C bps , a slot duration of 1 sec. and propagation
delay of R slots. The channel serves a large community of M termi-
nals, generating new messages according to a Poisson stream of intensity
A mess./slot . [Lach message is considered to be a packet of fixed
length of u ! bits. The packet transmission time is set to be equa:
to the slot duration, t = (uC)

The performance of an access-control discipline applied to this
channel is assessed in terms of the following measures. A performance
indicator of major importance is the steady-state average packet waiting-
time function W . The latter can be expressed as the limit (when it

exists)
W s (2.1)
1 ”%

where Wn denotes the waiting-time of the n-th message in the system.
This waiting time, expressed in terms of number of slots, is measured from
the instant the packet is transmitted by its terminal (which happens at
the start of the next slot following its arrival, thus not including an
average of 1/2-slot delay between actual arrival and first transmission)
to the instant the packet is successfully transmitted. The overall
steady-state average message delay D includes thus also single-slot and
R-slot durations to account for the transmission time and propagation
delay, respectively, associated with a successful packet transmission.

We thus have,

D=W+R+1 . (2.2




A successful packet transmission will occur if the packet is the only one
being transmitted in its slot, while packet collisions occur if more than
a single packet is being transmitted in the same slot. Denoting by Hi

the munber of successful transmissions in the i-th slot, Si = 0,1, i=l

the channel throughput is given by

N
s = lim .\"‘1;; y \‘ (2.3)
Moo L i

expressing the channel output rate (i.e., the limiting average number of
successful packets per slot).

We will note, in Section I1I, that to stabilize the GRA channel,
certain packets will have to be denied access and be (at least temporarily)
rejected. The probability PR indicating the probability of packet rejec-
tion will thus serve as another index of performance. Note that if access
(eventual successful transmission) is then provided to all non-rejected

(accepted) packets, we will then have
. = (1~PR) : (2.4)

The Slotted ALOHA Random-Access Procedure

The regular slotted ALOHA (SA) random-access discipline operates as
follows.

Protocol (SA discipline):

A newly arrived packet is transmitted by its terminal at the start
of the next slot. A packet transmission (or retransmission) which collides

with other packet transmissions is retransmitted by its terminal. The re-
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transmission slot is chosen according to a uniform distribution over the
. slots following the reception of the broadcasted collision (i.e., R
slots after the transmission of the latter colliding packet). Fach
packet is being retransmitted, governed by the latter random retransmis-
sion delay procedure, until it is successfully transmitted (avoiding any
collisions). |

To indicate the evolution of the channel state process under an SA

discipline, we define the following random variables. We let Ay Nps Rp

and S, denote the numbers of new arrivals, total transmissions, collisions
1 ) )

and successful transmissions, respectively, associated with the n-th slot
We further set Z = to denote the number of packets allocated for retrans-
mission at the n-th slot. We then note that {An,n>l} is a sequence

of i.i.d. random variables governed by a Poisson distribution,

k
=X
P(A=k) = e *-, y o1 B B DR {2
We have for n=l1 ,
A Zn 2 An = Sn + Rn g (2
Rn = NnI(anl) " (2
Sn = I(Nn=]) y (2.

where [I(A) 1is the indicator function associated with event A , so that
I(A)=1 if A occurs and I(A)=0 , otherwise.
Consider now a set of K consecutive slots over which R trans-

missions (or retransmissions) are made according to a uniform distribution.

5)

.63

8)




The joint distribution of

-0-

{T(l),T(“),...,T(K)? , where T{]) denotes

the number of transmissions allocated to the i1-th slot (out of these

K slots and of the R transmissions), i1s computed as follows. Let

(x)

{u , i=1,2,...,R} be R 1i.i.d. integer-valued random variables uni-

P Doy B

formly distributed over |[1,K] ,
puttax) = ! k=1,2,...,K .

Then we have

] R :
) - 5 1y, je1,2,.00k
1=1

Thus, we conclude that the joint distribution of T 7,1 ey

given R, 1is the multinomial distribution g&k)(nl,n,,...,nK) given by

5
P{Y(l)= 1 T(“)=n2,...,T(Kan nl+n2+---+nK = R}
g (n, ,n )
hR ]’ 2) ’K

where U~ni-R, i) S R nl+---+nK = R

T(j)
n

Considering now the SA procedure, we let

5

n-slot collisions allocated for retransmission in slot n+R+j, j=1,2,...

Thus, we determine from (2.9)-(2.11) that the latter variables have a

multinomial conditional distribution given by

el ) mlh) R RN § 7))
l{ln -nl,...,ln =N, Rn—k} = 8p (nl,...,nz) 3

(29

)

£2:19)

{(2.11)

denote the number of

o



<10 =

where

) n. =R, 0 ni-R S e

Markov chain Z={Z _,n21} , over the space of non-negative integers .# ,

where we set

5y {"(n) 5 (n) ..,Z(n) } ’

“n “n+l’ “n+2’° n+L+R

= (I

Z3 denotes the overall number of retransmissions allocated to the

and

i-th slot by any collisions occurring at the n-th slot, or earlier

S0 [

= 7 since all
“n+1 n+1

@ijen, at the jlth slot, with j=sn). Clearly,
allocations for rct%ansmissions at the (n+l1)-st slot have already been
made at the time slot n . The transition probability function for ‘arkov
chain Z 1is readily expressed in terms of the following expressions.

Glven :” , we obtain ;n by setting

3l
2+ 1) _ o(n) 1<i<R (2.13a)
“n+l+j ntlty 2 - 2 =
= (L) - ) el 3 ) o Tt
“neleRej T “nalemsej I (2.13b)
where ZLT;+R+L =0, and {Téi}} are governed by distribution
K&L) («) . Thus, we have
n+l )
= 9 -
Nn+1 Zn*] ) '\n+] ’ (£.13¢c)
= |\ VA 2 ¢
Rn+1 Nn+ll(Nn+1 ), {2.15)
T =0, i<jsl, if R, =0 (2.13¢)
n+l ’ J3bh 3 n+1 ’ Vs &
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S BN fe JPEY o SRR )
l(ln+1 = nj - ST L|Rn+l R) £p (nl,.. ,nL) - (2.13f)

If

where 0sn.<R , 1sjzL , T . = B0 .

J ’ I:l |

Equations (2.13) thus specify the transition probability function for
the channel state sequence Z (lIig. 2.1)

By Eqs.(2.3), (2.8), the channel throughput s satisfies

- L Fils/on S =
so= e N ] P (2.14)
n=1
If one assumes the retransmission counting variables Zn to be governed
by a Poisson distribution with mean Z (see [3]-[7]) then, by (2.13c),
N will follow a Poisson distribution with mean N = Z+) . Subsequently,

n
we obtain by Eq.(2.14),

s=Nexp(-N) <e . (2.15)

-1
It has in fact been observed that e is the maximal possible throughput
of an SA channel. We not in (2.15) that the channel throughput increases
with N till N=1 and, as N further increases, the channel throughput

rapidly decays to zero.

™ Due to the bi-stable nature of the SA channel (see [5],[7]), the

underlying Markov chain Z 1is readily noted to be transient, and the
packet average delay D subsequently becomes arbitrarily high, D=W=w ,
Delay-throughput performance measurements for the SA channel are many times

y obtained by admitting new packets into the channel only for an appropriate
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finite duration N] . The latter duration can be chosen, assuming
RI=U , as
N, (L,) = in ; : % e ; 2
](Il) Fins =l ]n+l 11) (2.10)

Thus, the channel is allowed to admit new packets as long as no more than
L, slot collisions are observed. (Note by (2.15) that, for Ly-1, the
resulting channel delay-throughput performance is quite insensitive to the

value of Ll since, when Rn> 1 , the throughput and message-delay values

rapidly decrease and increase, respectively.) To analyze the SA scheme

with (2.10) incorporated, we replace An+1 in (2.13c) with a controlled

Alc)

el M2 1 , given by

arrival variable
K, ST S N](L])

Ale) . (2.17)
O S Nl(Ll)

Following the Nl-th slot, packets continue to be retransmitted until

the N,-th slot, where

N, = Z¢nf{n: n > N

5 Rn=0}

l!
To obtain the average packet waiting time associated with such a controlled
SA channel, we can further assume that the same channel operation is re-
peated following the Nz-th slot of each operation period. (This readily
follows by noting that the resulting state process is a regenerative sto-

chastic process, with a regeneration period of length N, , and E(N2)< ©

2
see [10].)

é(c)

The resulting Markov Chain is then clearly positive-recurrent.

The associated average message waiting-time function W is then calculated
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using a Markov ratio limit theorem, following the procedure presented in
[1] . Since the latter procedure is utilized here to analyze the GRA
scheme, we briefly sumarize it.

, g 2 gk . C
For an irreducible positive-recurrent Markov chain {7 | or {Z( )
il n ?

L4

we set N(Z ,% Snel

and W(Z
M “n+1) (o

) as the number of newly admitted packets and
the sum of the waiting-times of all transmitted packets, respectively,

during the n-th time period associated with Z, (i.e., the n-th slot for

the SA procedure). For our applications, the latter functions are noted

to be time-homogeneous and to depend only on ( ) , for each n > 1

»n’gn+l
Further note that, as M » o |

M

Subsequently, we can write

N M
A ) W(Z,2041)
Z JE EL__ = g}fmm) n= 1____«__ 3 (2 7 8)
} ) \ "
Y y
él ‘J(Zn’f“ﬂ‘f‘l)

with probability one. We now apply a Markov ratio limit theorem (see [9],
p.91, Theorem 1, and [1]) to the vector Markov chain {Xn,n > 1} , where

} . The latter is an irreducible positive-recurrent Markov

Y = 17
. =)

g la

n+l
chain with the stationary distribution {n(i,j)} . We then conclude that
 Hn

EIN(Z,,

z
fner)] (2.19a)
tne) ]

where

—— - - 05
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W

. 7 7z
l'[M—z‘il"'~1l+l)l

LWL DL
L)

E[N(Z, .2 ,)] = iii N(i,j)m(i,j)

- : e
lor the SA channel described by the Markov state sequence 2 )

we have

” - (C)
J -
.\(.. ,ul 1) /\n 'y

W(Z ,Z '
—n’en+1)

R R & 1) 27(€) 4. 4 17 (L)
n n n n

In Eq. (2.20b), we have included a propagation delay of R slots for

each of the Rn colliding packets, as well as additional delay terms

(2.19h)

(2.19c)

b

(2.20a)

(2.20b)

incorporating the positions {Tﬁl)} of the retransmissions within the

corresponding set of L slots. Variables Tél) are expressed by

(2.13b) in terms of (Zn’zn ) and their conditional distribution is

+1

given by (2.12). Subsequently, K(Tél) RSC)) = L_lRéc) , So that we

obtain
(©)q . 1 (c)
L[h(;n,z *1) Rn ] = [R + 2(1+L)]Rn

We note that since, for the present case, we have

N, o N2
z Ar(‘(') i z S‘n ’
n=1 n=1
we can also set
NZyoZyer) = S

(2.21)

(2.22)
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Using Equations (2.20a), (2.21)-(2.22) in (2.19), we obtain the following

result.

lheorem 1. For the regular slotted (ALOHA) random-access scheme, input-

. SR - (C
controlled as represented by the underlying Markov chain process Z )

the limiting average packet waiting time !V is given by

W= [R+ ;(M,)]r{{“) ’ (2.23)

=\ C Mo ey - . «
where R{ ) denotes the limiting average number of retransmissions per
packet, and is given by

=) . @) _ 'Y

ke SCLLE (2
gals)y 9

s
(9]
—

where E(R(C)), E(A(C)) and E(S(C)) are the limiting means (w.r.t. the
measure w(i,j) ) of Réc) - Aéc) and Séc) respectively, and s(c)=E(S(C))

is the channel throughput. |

Theorem 1, which serves as the appropriate version of Little's
Theorem for the present scheme, allows us to compute the average packet

waiting-time W from the limiting mean ﬁA(C) associated with Markov chain

Z(c)

The latter mean can be computed by numerical methods or simply

(c)

through a simulation of Z (using the recurrence relationship in the

flow diagram of Fig. 2.1, with An replaced by Aéc) , and appropriate
restarting conditions). The delay-throughput performance of such an SA
scheme will be presented in the next Section. The delay-throughput perform-

ance characteristics of this input-controlled SA scheme are basically similar
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to those presented in other studies of SA schemes (see [3]-[8]). The

Markov-state process description and analysis presented above serve to
present the essential points relevant to our analysis of a GRA scheme,
as compared with those of an SA procedure, as well as to introduce and
and describe the underlying stochastic mechanisms to be utilized here.

The GRA access-control scheme is presented in the next section.

e ——————————— e —
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ITT. The Group Random-Access Discipline

To present the Group Random-Access (GRA) procedure, we identify
first the sequence of periods {Bn,n » 1}, during which the group of

terminals under consideration are allowed to contend for channel access.

The n-th period Bn is assumed to contain K successive channel slots

K > 1 , and thus be of duration Kt sec. The distance between Rn and
Bn+1 , measured in terms of the number of slots following Bn and pre-
ceding Bn+1 , can be taken to be given by any fixed number of slots not
smaller than the propagation delay R . With no loss in generality, we
thus assume in the following analysis the latter distance to be equal to
R, for any n,n 2z 1

If N groups of terminals are set to utilize the whole channel ca-
pacity, each using a GRA procedure, channel time is decomposed into the

union of N such periodic sequences {Bél),n =1 1=i=N} . <o that Bgl)

is followed by BY*D 5 <N, ana by B ,
n ¥ By n+l

group of terminals with an overall traffic rate A(i) uses the channel on
during periods {Bgi), n > 1} , and thus does not interfere with the tran
missions of any other group of terminals. Since the performace character
istics are then the same for any group of terminals, except for varying
values of X, Rand K , we need to study the performance of only a singl
group of terminals which we assume to have an overall traffic intensity
and to emit newly arriving packets, following Poisson statistics (see (3.
only within the sequence of periods {Bn,nzl}
Alternatively, if we utilize only periods {Bn,nzl} to serve a

family of network terminals on a GRA basis, we again assume the latter

family to produce new packets according to a Poisson process supported on

by B(l) nz21. The i-th

ly
o

e

A

1)),
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<Hn,n-1} ; 1.e., the number of newly arriving packets during Hn

denoted as \n , 1s a Poisson variable with mean KA

’

B SR
- Cl e

H{A =1}
11.\n AR 31

s 3=0,1.,2,...5 Tk
with these An new arrivals uniformly distributed over the K slots of
Bn , and {\n,n-l} being a sequence of 1i.i.d. random-variables. Thus,
new packet arrivals utilizing the GRA procedure and occurring outside
{Bn,nzl} , can be uniformly distributed for transmission over the follow-
ing period of K slots, and subsequently included in the above-mentioned
arrival model, with X appropriately computed as the average number of
new packet arrivals per utilized slot. The extra delay term, expressing
the packet waiting-time from arrival until first transmission, is again
not included in the following waiting time and delay functions, but is
readily appropriately added. Considering the above-mentioned arrival pat-
terns, the GRA scheme operates as follows.

Protocol (GRA discipline):

1. Newly arrived packets are transmitted in the next slot.

2. Packets colliding within B, are retransmitted within
Hn+l,n»l , at a slot determined by a uniform distribution over
FLK] .

3. [Each packet is being transmitted and retransmitted until success-

fully transmitted, or until rejected from the network by a network

control procedure. |
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We note that step 3 in the GRA protocal incorporates the possibility
of packet rejection control to yield finite packet average delay-times,
as noted for the SA scheme. The related optimal control analysis will be
presented in the next section. We will present in this section a few basic
characteristics of the GRA scheme.

As in Section II, we let An’ Nn’ Rn’ Sn and Zn denote the numbers
of total new arrivals, transmissions, collisions, successful transmissions
and packets allocated for retransmission, respectively, within the n-th
period B . The arrival process {Ah,nzl} has been characterized by (3.1).
Relationships (2.6)-(2.8) hold here as well. Furthermore, we can write

here for n21 ,

n+1l n

N =R + A =S R . (3.3)

The GRA channel state process can be represented as a vector Markov

: 2K
chain Z = {Z ,n=1} , over the space ¥ , where we set

(1) ju1.2,....K ,

= (1)
= 1y A

and Aél) and Tél) denote the number of new arrivals and the number of

retransmissions, respectively, allocated to the i-th slot within Bn,n~l,

1<i<K . The transition probability function of Z, 1s obtained as follows.




We note that the arrival variables {Aéiir are statistically independent of
Z and are characterized by (3.1). The variables lT[l)} depend on Z
T n+1 1

only through Rn , which is given by

K .
R = } rY) (3.4a)
where for each j, j=1,2,...,K ,

1) Néj) I(NAJ), s (3.4b)

7]

and

SRR ASA RN (3.4c)
n n

for nzl . Conditional distribution (2.12) is then applied here to yield

multinomial distribution (2.11),

(1)

Itln+l

cickin =31 = U4
n., 1<i<K Rn i) Lj (nl,...,nK)

i
=
e
=
:t_‘
=3
.
i
\<..
5
I

K
where U“nifj, is] d vk 5 3 W =g

Equations (3.1), (3.4)-(3.5) thus yield the transition probability function

for the Markov state chain Z. One observes that 2041

only through R . In particular, we note that R = {Rh,n\l} is now a

depends on Z
-

Markov chain over .4 , with a transition probability function expressed




through Eqgs.(3.4)-(3.5) . A flow diagram indicating the transition
Rn ’Rn+1 is shown in Fig. 3.1 . Also included in the figure is a de-

cision box involving the computation of the 0-1 control variable ”n*l’
as determine 4 > V¢ 05 : J U =[J(R_ .1 . 8 C

as determined by the values of Rn and ln’ n+1 (QN,In) The control
variable ”n is used to block any new arrivals, being set equal to 1

in a period during which all arrivals are rejected and equal to 0, other-

’

’

wise , thus inducing the controlled arrival variable A;J): (I-Un)Aéj)

Y ox @)
Ap = .Z A
)=
The throughput variable Sn+l 1s given by
K .
: = 15 NG - 3
S jzl IS =10 (3.6)

By the multinomial distribution (3.5) and distribution (3.1), we conclude

(k)
Nn+1

Nn+l: An+l+ Rh » 1sksK,

4075 WEL T o, 1i S % x 3
8 - st -() @) (1)

where 0O<i<j, j20 . Hence, by (3.6)-(3.7), we obtain

1 Yhe !
l'.(.H;”l) = [:{f\n” <]- K—) } . (3.8)

Noting that xaxﬁc‘llln(a_l)]—l, for x20,a<l , we obtain the GRA channel through-

that (Eq.(3.4c)) is governed by a binomial distribution, given

put s , expressing the average number of successful transmissions per slot.

Jps———
e
e s ¢

b ——
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upper bounded as

S <

| SECIERNEDRS: s X, (
e (KDEn[(1+(k-1)- 1] ~ e %k - (3.9)

It 1s noted that the maximal value of E{Sn+l Nn+l} 1s attained at

Nn*l = N;+l , where N:¢1 1s given by the integer part of
{t’n[1+(l\'~l)-l]}-1 . Note also that N;+1 >K-1 . Function ”K 1S very
close to 1 for any K-2 , and GK<>1 as K=+ . Also, K-‘N:+l 20
as K+ = . By actual simulation of a GRA channel, we further verify
(see figures in Section 4) that we can attain s = é GK X %-. We have

thus concluded the following result.

Theorem 2. A GRA scheme with K slot periods has a maximal throughput

of G

We note that, in deriving the above maximal throughput result in

(3.0), we have only utilized the uniform distribution associated with

allocating retransmissions and the conditional distribution of new arrivals.

Otherwise, the distribution of /\n can be chosen arbitrarily, and need

not be a Poisson distribution.

It is readily verified that the state sequences Z and R are tran-

sient, and thus D=W== | when the channel is uncontrolled; i.e., when
Hn=0,n?l . For that purpose, considering uncontrolled R with the transi-

tion probabilities pii , hote that
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whereas 1 +» « , Py increases monotonically to 1l-exp(-2K) > 0 and

q; decreases exponentially to 0 . Subsequently, a random walk with a
transition probability function {ﬁij} , where Pii-Kz a; > pii*l: P; »
i is noted to be transient, thus implying that R itself
1S transient.

To note the evolution of the mean number of period collisions, we
ncorporate Eq.(3.8) into relation (3.3). We then obtain, for nzl

’

noting that Nn+ = A + N = &

L{Nn*z

and therefore,

( 1 )le-l
le}- Npv1 = E(AL) - N\ g ’ (3.10a)

N -1
et 3 L i 1 n+l } i
L(Nn+2) E(Nn+1) = E(An+2) L{Nn+l(1 Kf) . (3.10b)

Also, since R ., =Ry *+ A, - Sy » we have for nxl ,

) . 1 fn'
ER ,;) = SR +A ) 1—(1- K)

Note in Eqs.(3.10) that, as the total number of period transmissions N

A -1
n+l
}, (3.11)

n+l
increases, the throughput rapidly decreases and subsequently
E(N

- E(N_.,) = E(A

n+2) n+2) -

n+l

When the channel is controlled, Eqs.(3.10)-(3.11) still apply if we replace

the arrival variable A, by the controlled arrival variable Rn « In par-




-

ticular, we obtain from (3.11) the conditional means of R o
n

A

) = B = 3 J = 3 3
LJ(]) HRn+l Rn ! ke (3.12)

where 120, j=0,1 , given by the following Proposition.

Proposition 1. For a GRA scheme, we have for i-0

’

) 3 = - . __1 ]“l - 4 -
hl(x) = 1[} <1 K > ] . (5.135a)

and

Proof. FEq.(3.13a) follows from (3.11) when we set A

= () 3 2 2
Asi 0. Eqs (3 1.3b)

is obtained by evaluating the expectation in (3.11), with An+1 governed

by a Poisson distribution with mean A and setting Rn=i

DLE.D.

Functions Rb(i) and Rl(i) , given by Eqs.(3.13), are shown in

Fig. 3.2 . Note that R'I(i) = R_()(i) , 120 , for A=0 . For any A20

b

we observe R”(i) to be a monotonically increasing function of i
with a slope monotonically increasing to a rather constant value (almost

. S : 5 g : I SRR [ e
real line) within 0<i<2K . For large 1 , Nn(l)?l , as ; m i Rn(1)=l.
yoo

We further observe that ﬁn(i) - Rl(i)*KX for i>K, and that

Ki(1e™) = Ry(0) < Ry(i) < ivkx (3.14)
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and, by setting X=0 1in (3.14), we also note that
D ﬁi(i) s (3.15)

The lower bound in (3.14) clearly specifies the average number of collisions
among newly arriving packets during any period.

The computation of the average packet waiting-time (or any other
moment of its waiting-time) is now presented following the procedure used
in Section II here and in [1]. For this purpose, we assume that an appro-
priate control function Un=U(~) is chosen, so that the Markov state se-
quences Z and R are irreducible positive-recurrent. The transition
probability functions and stationary distributions of Z and R are denoted
by {Pz(i,j)}, {Wz(i)} , and {PR(i,j)}, {HR(i)} , respectively. As in

Section [I, we set N(Zn,z as the number of newly ad-

-n+1) n+l)

mitted packets in Bn and the sum of the waiting-times of all packets trans-

and W(Z ,Z
Eq » &

mitted during Bn , reppectively. Again, these functions are noted to be
time-homogeneous and to depend only on (Zn’;n+])' nzl . Considering non-

degenerate controls that yield a packet rejection probability (P.,) less

R
than one, we have

s
=

Lim

Moo

I o~

w3 5 o
N(en9fn+1) ’ w.p.l.

n=1

Subsequently, Eq.(2.18) holds here as well. Applying again a Markov ratio
limit theorem, Eqs.(2.19) are obtained for computing the average packet

waiting-time W .

For the controlled GRA channel, we have

N(ZyiZney) = A, » (3.16)




E : Y . (K)] -
Wz 2o,y = R+ [T+ 2n(D) o )] v ez ) (3.17)
where
.2 (i) (i)
A“(én) = ii] [(_l‘])](x\n' =l)l(:\n' =0)] . (3.18)

The first two terms in (3.17) are the same as those appearing in the SA
channel expression (2.20b). The third term, unique to the GRA procedure
and given by (3.18), accounts for the extra waiting-time experienced by
a successful retransmission within its last period of transmission. As
for the SA scheme, assuming the controlled channel to serve (eventually

successfully transmit) all admitted packets, we can also set

= Q
N(Z %pay) = S, - (3.19)

To evaluate the mean of (3.17), we use the multinomial distribution

. i) \ o w L :
(3.5) to determine that L(Tn+1 Rn) K Rn , and subsequently
(1) (2) (k)] } = %
L{[In+1 $ 2T+ cee KT |[Ryf = SRR (3.20)

To compute the steady-state mean of (3.18), we not that the limit
é ; > (J)._ (33 )
Pop éﬁz I.{I(Nn -l)I(An =0)} , (3.21)

is independent of j, 1sj<K , and yields the (steady-state) probability of

a successful retransmission. Similarly, the limit

A - . o .
Py = Lim e D=n1@W-ny (3.22)
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i1s independent of j, l<j<k , and yields the (steady-state) probability
of successful first (newly arriving) packet transmission. Clearly, the

throughput s= Iim E(S_) satisfies
N I

S = Ppgp * Pgp - (5.23)
Probability pg, 1s given by
s R .
= g )7(])2 ‘( - 1_) n'll”(J)z I
Pgp, = g5m PIA"=LIEHT- ¥ . T
. R
_ 7 (j)_ ‘( el ) gl v l T D
élg P(A; —I)L‘ 1 K In 0‘ , (3.24)

since R, 4 depends on ﬂéJ) only through U, and none of the R,

retransmissions are allowed to be allocated to the j-th slot. The

probability of a single controlled new packet arrival in a slot is given by
-A

A (3] -A
¢ A~"=1) = (1- Ae = S 5.2
an p(&n ) ( pR) ¢ se , ( 5)

where

pp = Lim p(U=1) , (3.26)

is the probability of packet rejection, and the (steady-state) throughput

S 1S glVCn hy
> ]‘ 2 }'( ) /\(1 I)l) ~ ("‘- )
n+o n {

Using Eqs.(3.21)-(3.25) in Eq.(3.18), and incorporating Eq.(3.19), we

conclude that

e e e —— e e —
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o Elawz))

A e e g
W Nz T 2 1)[1 ¢ 1.'{1 r\')

e

l
| =0 3.2
By ‘], (3.28)

where the expectation operation on the RHS of (3.28) is with respect to
the conditional stationary distribution of Rn—l given Un=0 . Using Egs.
(3.17), (3.19) and (3.28), we obtain by Eq.(3.19) the formula for computing

the average packet waiting-time W in a GRA channel, in terms of the

steady-state statistics of {Rn,n?l}

Theorem 3. For a controlled GRA channel, represented by an irreducible
positive-recurrent state sequence Z , the limiting average packet waiting-

time W is given by

W=[R+; (1+K) R+ oW (3.29a)
where

Ry =s ' R=s" tim ER) (3.29b)

A S S S nﬁg (R S D

and AW is given by Eq.(3.28). |
Regarding the extra packet waiting-time term AW , we note the
following points. Clearly,
= 1
AW < E{K-l) . (330

Furthermore, in all practical applications, we will have R<<K and,

subsequently,

MBS




—anl

R b d
E}(1~ %-) n 1iun=0{ x*1-K R (3.31)

Approximation (3.31) yields approximation AWl to AW , where

AW = N = SKD (e tak ), (3.32)

and approximation Wl to W, given by

Wl = (ke 20+0]s7 R Al . (3.33)
In all our performance computations, we have found approximation Eq in (3.33)
to be excellent, generally yielding average waiting-time results nearly
non-distinguishable from those obtained by computing W . We note that,
for computing W in (3.29), only the stationary distribution of
{(Rn,Un),nZI} is involved, while the major term of (3.29) requires only
the throughput s and the stationary mean R of {Rn,nzl} . For com-
puting Wi in (3.33), only means s and R are required. The latter
mean (or related distribution) is readily obtained, for any control func-
tion, from the transition scheme of Fig. 3.1, using simple numerical compu-
tation techniques or a direct simulation procedure of ((Rn,Un),nzl} g

A control scheme similar to that presented in Section IT, induced
by thresholds Ly, Nl(Ll) (see Eq.(2.16)) and Ny 1s simple to imple-

ment and can also be used here. Note that, under this scheme, the control

function is given by

0, if R <L,, U_=0
o S o
v 3 2k 5 UL
Upey = UR,U,) = i ;i Rn>;1 Un=1
n n’ ' n § Rn » Uy

0, if =0 , U=, (3.34)
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As indicated in Section 2, this scheme will also represent the waiting-

time performance of a GRA channel which stops admitting new packet arrivals
when the number of group retransmissions surpasses Ll and is disconnected
as soon as the latter number becomes zero. The delay-throughput perform-
ance curves for SA and GRA schemes, under input-control function (3.34),

are shown in Fig. 3.3. We assume K=1, L,=2K, R=12 and choose values K=6

1
and K=12 . We note that, as the network traffic intensity A is increased,
the channel throughput s 1is increased until its corresponding maximal

value is achieved (note that we attain B el for K=12). The delay-
throughput performance characteristics under an SA or a GRA scheme are
observed to be similar. Note that, under input control function (3.34),

the operation of the channel is terminated after a random number of slots

N, , with the mean function E(N;)<=  rapidly decreasing as %*e—l
Alternatively, if the channel is restarted each time following its blocking
period, the packet probability of rejection Pp will be noted to increase
as » 1is increased. A procedure for optimal control of a GRA channel,

incorporating both packet average time-delay and probability of rejection

as indices of performance, is developed and studied in the next section.
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IV. Optimal Dynamic Control of a GRA Channel.

The Optimal Control Problem

The dynamics of the GRA channel, governed by control sequence
‘Hn,n~l} , is described in Fig. 3.1 and Eqs.(3.3)-(3.5), in terms of the
underlying state sequence Z . Assuming Markov chain {(Rn,Un),n-l} to
be irreducible positive-recurrent, as is the case for all our applications
of interest, the stationary probabilities of the latter chain have been
noted to determine the major channel indices of performance. The average
packet waiting-time W 1is the first measure of performance of interest.
[t is given by (3.29) and is well-approximated by Wi of (3.33), thus de-
pending on the latter Markov chain only through R and throughput s
The second measure of performance of interest here is the probability of
packet rejection PR , given by (3.26) and directly related to the channel
throughput s by Eq.(3.27). We wish to obtain the control sequence
ué{Un,n»l} which will yield the minimum value of packet average waiting-
time (or delay), while providing an appropriate prescribed value of packet
rejection-probability PR (or channel throughput s ).

Note that rejected packets can be assumed to be lost, or to try again
to access the channel following an appropriate random delay. The latter
is then assumed to follow an exponential distribution so that the point pro-
cess of new arrivals is still described as Poisson with intensity A . Since
the probability PR for most applications will be very small (see latter
curves), the precise rejection-reenter mechanism is not important for the
present analysis.

Assuming causal observations of the controlled channel state sequence

Z are available to the controller U ,only Markov sequence {(Rn,Un),nél}




needs to be causally observed, since measures W and PR are considered.

The set of admissible control functions “# is not constrained and includes
all deterministic and randomized binary functions operating on all past
observations of {(Rn,Un)} . Thus, the control variable operating at the

n-th slot Un is expressed in terms of function fni-) , where

1]

= f | ‘he = <M< g
l]n ‘n(‘Rl,n’l l,,n-l) , where Rl,n {Rm,l m<n} and ll],n

{U ,1sm<n} ,

m
and Un e {0,1} . Since only finite average packet delays are of interest,
we need to consider only the subset of control disciplines %q: c 4 which
result in a positive-recurrent controlled Markov chain fRn,nzl} with

finite mean R < @ | where

N
— oo . -1..
= lim E = lim N R :
R : L(Rn) A N r,{nzl Rn} - (4.1)

and a packet probability of rejection PR given by

N
S i .
Py = ”Lm N E {n§1 I(Un—l)} g (4.2)

The countable number of feasible control functions u e 4. induce

the set "1{ of values of attainable rejection probabilities. Thus,
P = 4 = P_(
R = {pp Pplw , ue .}, (4.3)

where PR(E) denotes the rejection probability resulting under control

function u . The minimal attainable rejection probability is given by

B o et
PR inf{p:p e Sﬁz} . (4.4)
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For IR lR , we set

p(PR) = Max{p:p g.fh, p<PR}, (4.5)
as the rejection probability closest (from below) to P, . Given any value

R

T : e 0 . : Y :
of rejection probability Pp, Pp>Pp , we wish to obtain the minimal attain-

able average packet waiting-time W*(PR) , given as

We(P) = inf {W(u): Po(u) = p(PR}, (4.6)
ge?{E

where W(u) denotes the average packet waiting-time obtained when control
function u is used. An optimal control function attaining waiting-time

W*(VR) and yielding rejection probability P, 1is denoted by u*(FP)
= o

R
To generate the optimal delay-throughput curve of (4.6), as PR
varies between Pg and 1 , we can in turn derive function @W(F) , as

varies in [0,») , where

¢,(B) = inf {W(u) + BP,(u)} .
W L_l(“//[: R 4.7)

as

Alternatively, since W is well-approximated by W, ot [3.33) or

the contribution of AW in (3.29) to W is generally small, we can de-

rive function ®R(ﬁ) , given as
op(B) = inf {R(u) + BPp(u) b, (4.8)

pe ey

where £20 , and R(u) denotes the limiting average number of retransmissions
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(4.1) under contro! function u . Given g,  let uf denote a control
function attaining the minimum at (4.8). We have thus obtained the follow-

1ng result.

Proposition 2. For a GRA channel, curve :R(x) of Eq.(4.8) , B=0 ,
induces the delay-throughput curve W*(PR) of Eq.(4.6), IP'P? Thus,
for each 20 ,
XY = wk(p * Q 4.9
Wlug) = W (P*(8)) , (4.9)
where
%N *
: 8] = P - )
lR (B) IR(QH ’ (4.10)
so that
* . *
g*(PR (B)) = u,” (4.11)
and 1 2P *(g)>P° . ‘l
R R

Proof. For 820 , curve iw(ﬁ) of Eq. (4.7) induces curve W*(PR) of
Iq.(4.6), since by (4.7) control function QH* attains the minimal average
waiting-time value le) , considering all control functions u yielding
I'R(u) = (’R(l_JB*J . By Eq.(3.33) for W, we note that W depends on R
and PR (through s , see Eq.(3.27)). Therefore, for any given FR , W

is minimized if and only if the corresponding R is minimized. Hence,
curve LR(u) yields curve @w(u) and subsequently curve W*(PR) . One

recadily verifies, as will be shown below, that varying £ over [0,»)

T S perkvecie > +p. Sp° 0 )
covers the range {IR lR lR o 2 E s
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3

Proposition 2 indicates that a solution to minimization problem (4,8)
will yield the optimal delay-rejection probability curve H*(Iw,l . As

increases, a solution to (3.8) will represent a scheme with a non-increasing

rejection probability PP*(w) and a non-decreasing average waiting-time

function W*(g) = “(Ur*) .  Subsequently, we obtain the desired curve

- . ~ O .

u*(Pp) , and the optimal scheme u*lPR) = up* for some f£20, PD'PP . Note
\ i - D s

also the role of £ in (3.8) as a penalty cost for packet rejections.
Optimal control problem (4.6) has thus been represented in the form of

a Markov Decision problem (4.8), described as follows. The stochastic pro

cess {Rn,n'lj , with state-space &#=¢& = {0,1,2,... is controlled by the

1

binary control sequence {Un,nbl} 5 Un e A= {0,1} . At time n , corres-
ponding to the end of the n-th group B , state Dn 1s observed and

action (control) Un = f(R U ) , 1s taken. Subsequently, a cost

1,n’"1,n-1

C(Rn,Hn) 1s incurred, and the next state of the process is chosen according

to transition probabilities {Pij(Un)} . Thus, the controlled process

‘lglﬂx'l} transition probability function satisfies
,R =1,U =a} = P. (a) , (4.12)
n’ n n ij

where a « A = {0,1} . Under an expected average cost criterion (see, for
example, [10]-[12]), an admissible control function u e 7’1 1s chosen to

minimize the long-run expected average cost per unit time. For control

policy u , the associated cost function is then given by

1

N

. . =1 = .

¢ (i) = lim sup N " E )
u N u 'n=

N a0

: (,H{n,lhl) l]=1 . (4.13)
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“6_

for 1 e 4 , where 15“ indicates that the conditional expactation given u

is used. A control function u* is said to be average cost optimal if
¢ o(1) = Min 4 (i all i . (4.14)
i : uedsy. "u )

[ncorporating Eqs. (4.1)-(4.2) in (4.8), we obtain

(4.15)

++
=
-

N
Sk i b, )
g) = wJj Lim N “E R +BU
B) Ue . N0 Ig%nz] I n n]§
since I(Iln=l) = Un,n‘-l . Comparing (4.15) with (4.13)-(4.14), we conclude

the following result.

Proposition 3. The optimal control policy l:lg* yielding »:rP(l?) for a GRA
channel, for any B20 , is an average cost optimal control policy for the
Markov decision process {”%’Un) ,nz1} | under the long-run expected average

cost per unit time measure (4.13), with an associated cost function (I(Rn,Un)

given by

C(R,U) =R +gU . (4.16)
n: _n n n

Results from Markov decision theory are incorporated in the following

analysis to obtain the structure of optimal policy u(* , under cost measure

(4.13) and cost function (4.16). Note from (4.16) that following the n-th

period B, , when R, is observed and policy U ¢ {0,1} is chosen, the

associated cost function is given by their linear combination weighted by
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8, C(R,U ) = Rn*t’Un -

A particularly important subclass of control disciplines 1s the
class 4 < 4 of stationary control policies. A control function u is
said to be stationary if it is nonrandomized and it is described by a
mapping f(.): #> A , so that Un=f(Rn) . Thus, under a stationary control
function, the control Un at time n depends only on the present observa-
tion Rn . Such a control procedure is clearly easily implementable. We
note that, under a stationary control fungtion f(-) , the controlled pro-
cess {Rn,nel} becomes a Markov chujp*@ith the transition probability func-

/

tions {Pij(f('))} . 4

7
/

It will be useful in the/f6llowing analysis to consider the above
optimal control problem foy” {(Rn,Un),nZI} , also under an expected total
discounted cost measupé{v The latter is given, for a control policy u , by

P N n
/ 1 :,/Z’l:m 88U ) N[ ! =1 V. o
\9(1) b p Lu nzl a L(‘Rn,ln)}Rl 1£ , (4.17)

o

for %50 and a discount factor ae (0,1) . We let

/ 1 = inf [ %] 1> i
\u(l) e \Q(A) ez (4.18)

denote the minimal expected discounted cost function. A control policy

u* is said to be a-optimal if

Vu*(i) = Vq(i) ’ for all 120 . (4.19)
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The Optimal Control Policy

We wish to derive and characterize the optimal control policy u*
for the Markov decision process {(Rn.Un),n'l} , under cost measure (4.15),
or (4.13),(4.16) . We note that the corresponding cost values become un-
bounded for control u ¢ %ﬁi. At the same time, the simple control func-
tion wu, e . which rejects all arrivals clearly yields PR(91)=1 :

R(u,)=0 and subsequently

1

‘«I-g*(i) = ¢p(B) = mgl(i_) =B . (4.20)

Therefore, the search for an optimal control policy can be reduced to sub-
class «ﬁ: . The same conclusion will be observed to hold under cost meas-
ure Vl(i) , when o« is taken to be close enough to 1.

We will first establish that an optimal policy g: in fact exists,
and that it is furthermore a stationary policy. The structure of the opti-
mal policy will then be characterized. For that purpose, we first consider
the a-discounted cost problem (4.18), and subsequently study the character-
istics of the a-optimal policies. The policy obtained as a limit of the
a-optimal policies is then shown to yield the desired optimal control func-

. *
tion gy

(o

It is well known that a stationary o-optimal policy g;(a) for
(4.18) exists whenever cost function C(+) 1is bounded (see [10]). However,
for our problem lg] , and therefore C(+¢) , are unbounded. It has however
been shown in [12] that an optimal stationary deterministic policy for the
a-discounted cost problem exists if the following conditions are met. ‘he

existence is required of an integer m2l, a real-valued function g(+) on
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& with g(x)z1 for all x € &% and a real nunber b20 such that

L = ?ﬁvﬁigﬁﬁ V(x,a)ig(x)_m} <o . (4.21a)
and tor all «x I 1 e SR
mz | g(y)"P (@) < [gG)+b]" . (4.21b)

de \ yé .'T

We now verify that conditions (4.21) hold for our problem and subsequently

deduce the following result.

Lemma 1. For a controlled GRA channel, an optimal stationary (determin-
*

istic) control policy ug (x) exists for the a-discounted cost problem

(4.18), @ €(0,1) . The minimal discounted cost Va(i) is the unique

solution to

\'(l(i) .

min{C(i,a) + a } V_(j)P..(a)}
aeA j=0 a 1)

= min{i + ga+a] V()P @} , (4.22

ael j=0

the functiomal equation of dynamic programming. Furthermore, 98*(a) is
the policy which selects an action minimizing the right side of (4.22) for

each 1i,i20 .

Proof. The results follow by [12], once conditions (4.21) are verified.

For that purpose, we choose g(i)=max(i,1) , 120 , and m=1 . Then we
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obtain

L = sup {max [i + mjg(i)'l} = sup (1 + m'1| = ]+B <« ,

i20 aeA il

verifying (4.2la). For Eq.(4.21b), we obtain

max [} g(IPys(@)] = ] g()IP,;(0)
aeA  j=0 J j>0 ]

= y =T b} < - ’ = y - ')
j%o JIU(O) + P (0) < i+ KA+ 1<g(i)+ K1,
for 120 , us 1ng upper 'bollnd (3. 14) ;

G.ED,

It follows from Lemma 1 (see [12]) that the optimal discounted cost
V,(1) can be computed by the Policy Improvement Algorithm presented in
Corollary 1. (See also [13] for discussions concerning policy computations

using a policy improvement algorithm.)

Corollary 1. For a GRA channel, the a-discounted minimum cost function

vV (1) , i20 , is given by

V (i) = Lim V_(i,n) , (4.23)

N

where V, (i,0)=0 for.each i,i>0 , and V,(i,n*1) , nz0 , is computed

by the recursive relationship
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V (i,n+l) = min {i+Ba+aj v (_i,n)l’i.(a‘]} - (4.24)
: ac{0,1} 520, ™ J

We can now proceed to study the average cost problem, using the results

in Lemma 1 and Corollary 1.

Theorem 4. For a GRA channel, a stationary (deterministic) optimal control

) *
yolicy U,
POSIEY Yp

dependent of i, iz0 , satisfying

exists, yielding a minimum cost @u*(i) = @R(ﬁ) = @u*(ﬂ) in-

¢,(B) = ¢ (1) = Zim (1-0)V_(1) = Zim (1-a)V (0) . (4.25)

R u ; o o
- a~+] a~+]

Proof. Incorporating Lemma 1 and Corollary 1, the proof proceeds following

a similar procedure to that used in [14]. Considering the «-discounted

cost problem, we readily verify (noting that u,* yields a positive-recur-

B
rent controlled chain) that

Iim (1-a)V_(i) = Tim (1-a)V_(0) . (4.26)

o
o] a1

Furthermore, using Eq.(4.24), we will observe that there exists a station-

ary policy G and an increasing sequence {an} with 1n+1 such that

¢ﬁ(i) = lim (l-un)va [ (8 (4.27)
n+e n
for all 1, 120 . By an Abelian theorem (see [14],[15]) and conditions

(4.21) for i20 and u ¢ # , we obtain that

¢u(i) > 1im (l-a)Vu(i) > (4.28)
- atl




Therefore, using relations (4.26)-(4.28) and sequence {lnf used in

(4.27), we conclude that for any u e« % , i>0 , we have

¢ (1) ""’1(” = "’(1”” . (4.29)

¢ (B) = & 4(1) = ¢2(0) , (4.30)

and

More explicitly, we will note (see Lemma 2) by iterating Eq.(4.24)
and observing the resulting policies that, for a large enough value of
, @0y, the stationary optimal control function 1_1£2*(r1) = fxq is such
that un(i)=l for any i>M , for some finite integer M . Therefore,
we can choose a sequence {an} with anfl yielding a stationary control

policy L}V*(vxn)=ﬁ , each n , where u 1is the scheme derived from ﬁx

as a»l . Subsequently, using (4.28), we obtain for u e , i>0 ,
& (1) = Lim(l- I~ (i = ¢~ (i 7
Dl}(l) Lt f!n)\u(x,an) ¢u(1) " (4.32)

with the equality in (4.32) followed by an Abelian theorem ([15]) stating

that
N n 1 N
1im(l-a) 1im Z a Cn = lim N Z Cn
o+l Noo n=1 Neroo n=1
Therefore, u,* = u . Q.E.D.




-47-

Theorem 4 shows that an optimal control policy gw* exists, and can
be chosen to be a stationary control function, denoted by ug(i) , 120
Furthermore, the optimal control scheme can be cbtained by solving for
the «-discounted optimal scheme, using recurrence relationship (4.24),
and then letting o+l . We will use this procedure to establish the
structure of the optimal scheme. Its performance function is then com-
puted using the results presented in Section III.

We will not present here the tedious algebraic details related to
performing iteration procedure (4.24), but will indicate the relevant asso-
ciated results. To illustrate and explain the iteration results, we assume
first that ﬁi(a), a=0,1 , given by Eqs.(3.13) can be approximated by a

straight line given as
Rj(@) #ci+d) +d,(1-a), (4.33)

where a=0,1 , i20 , and ¢>0, d,>0 and d1 are appropriate constants.
We note by Eqs.(3.13) and Fig. 3.2 that, for i>K , Eq.(4.33) yields an
excellent approximation to ﬁi(a) . The slope function

Ai(u) = Ri+ (a) - Ri(a) is also noted to increase monotonically, as 1

1
increases for a=0,1 , to a value larger than 1 and, only at very high
values of i , A;(a) decreases monotonically to its asymptotic value of
g féﬁ i’lAi(a) =1 . Therefore, slope ¢ in approximation (4.33)
actually varies with 1 , as indicated above. Applying Eq.(4.33) to com-
pute Vq(i,n) following recurrence relationship (4.24), we note that
Vu(i,n) is obtained to depend linearly on i . Subsequently, relation
(4.33) can be reapplied in (4.24) to obtain Vm(i,n+1) from

tv,(j,n). j=0} . We then obtain V,(i,n) to be given by, for ac<l
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V, (i,n) = A(i,a,n) + \ a[B-D(a,c,n)] , (4.34a)
ae;
where
n-2
l ~r
D(a,c,n) = ad»> ( “J-- : (4.34b
- I-ac
Consider now the set of states {i:122K! . We have noted above that
h]4u)-1 for i1>K , a=0,1 . Furthermore, we have
P,;(a) =0, for j<i-K, i’k , a=0,1 , (4.35)

since, at most, K-1 successful transmissions can occur when more than K
transmissions are attempted. Therefore, in carrying iteration (4.24) under

assumption (4.33), we can incorporate the observation that

Y R.(a)P..(a) = R.(a)P..(a) , (4.36)
j=0 J 1) j:igK*l J 1)

when 122K . Consequently, in evaluating Va(i,n) by (4.24) for i22K ,
only functions {ﬁj(a), j=K} are involved. Since the latter functions
have a slope larger than one, we conclude that IWW&)=;¥ZDOLCM)
becomes arbitrarily large for o close enough to 1 ; and subsequently

3-D(a,C is noted to become negative, resulting in an optimal contro
B-D(a,c) ted to b gat lting ptimal trol

function satisfying the following property.

Lemtma 2. For a GRA channel, for any B20 , there exists an integer

M<e , such that the a-discounted optimal stationary control, for any

TS UUEDIEVSS S G- T —
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1>a>a, , for some ag , denoted by uvtx,i) , satisfies

u (i) = 1 feor M e . (4.37a)

The stationary optimal control policy wu,(i) similarly satisfies

®]

llB(i) =0 for i=M . (4.37b)

Furthermore, M<2K . |

For 0<i<2K , the appropriate corresponding slope ¢ 1increases mono-
tonically from a small value, so that D(a,c,n) is replaced by a function
D(a,1,n) which is increasing monotonically in i . Thus, letting n»>e ,

iteration (4.24) is observed to yield function Vu(i) described as

V (i) = A(i,a) + min a[B-D(a,1)] . (4.38)
: aeA

Function D(a,i) 1is increasing monotonically in i , for i<M | where M

is an appropriate finite integer. For i>M , any £>0 , we have
D(a,i) > B , for aca i-M | (4.39)
for some 1g close enough to 1 so that
lim D(a,i) < » if and only if  i<M . (4.40)

a*]

Properties (4.39)-(4.40) are incorporated in Lemma 2. Using expressions
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(4.38)-(4.40) , we can thus deduce the character of the optimal control

policy as summarized in Theorem 5.

lheorem 5. For £-0 , the optimal control function U”* attaining
p,(£) 1is characterized as a single-threshold control function u *(i)
N W

given by

u,*(1) = u_(i-K,(B)) = (4.41)
f S

where u (+) 1is the unit-step function. Threshold Kl(ﬁ) satisfies

0 - hl(n) <M , for 80 < B < ﬁmar
K,(B) =M , for B > 8 (4.42)
1 max
Kl(“) =0 |, for B < By )
where

Q = Lim ( - 2.
UmLLT a ’1 D( 1,“1 1) ’ (4 . 4.3‘1)
ho = KA [l-exp(-2)] , (4.43b)

and M<2K 1is the integer appearing in Lemma 2.

Proof. Eq.(4.41) follows, by (4.38), the monotonicity of D(a,i) for

i“M and relation (4.39) or (4.40) , for 1i=M . These relationships also

yield (4.42) for H»BO . To prove that K](8)=U for E<RB so that

o




lli;*li)=l , each 1 , we note that if C”(.‘i) denotes the average cost in

the n-th period when u.=a , we clearly have

since By expresses the average number of collisions, during a period,

due to new arrivals. Therefore, we attain ?p(z‘~,‘=6 by rejecting all
\
transmissions, and Klin)=0 . OLE

lheorem 5 characterizes the stationary optimal control policy u,*(i)

as a simple single-threshold scheme. For 8<f, , the optimal scheme

rejects all arrivals, yielding a packet rejection probability equal to
one, Pp=1 , and thus an average waiting-time W=0 . As g8 is increased,
the threshold KI(H) of the associated optiméi single threshold scheme

1s increased, to yield a lower P, value and the corresponding minimal
’ P, I{ &

R value, and subsequently minimal average packet waiting-time W value.

However, for any value of £ not smaller than R ; 43 ;. the

max T Tmax
same optimal single-threshold scheme, with threshold Kl(r):w , 1s obtained.

The latter scheme yields a packet rejection probability PP:PPO which is
< X

clearly equal to the minimal attainable PP value. Using Proposition 2
AN

the optimal control scheme has thus been shown to be governed by the fol-

b
lowing characteristics.

Corollary 2. For a GRA channel, there exists a stationary optimal con-
trol scheme ﬁp(i) which yields the minimal R and W1 values, under a

; : : Sl s )
prescribed packet rejection-probability Pp=p where l-p-PR( . Such a




T
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scheme assumes a single threshold structure, given by

\1, if -1 = Kp)

u (i) = (4.44)
((1, it i< k(p)
i , : . . > ~ 0
Threshold K{(p) increases monotonically from K(1)=0 to h{PR )=M
. ) . : Sy 0
as p 1is decreased from 1 to PQ . Rejection probability P,  ,

attained by the single threshold scheme with threshold M , is the minimum

attainable such probability for optimization problem (4.8). |

[t 1s interesting to observe that, as the threshold K of single-
threshold scheme (4.44) is increased from 0 to M , the packet rejection
probability and average waiting-time are increased and decreased, respec-
tively. However, a further increase of the threshold above M in such a
scheme only increases Pp while also increasing W , and is therefore
avoided. This phenomenon is explained by noting that, for such a scheme
with a threshold higher than M , the time gained to threshold upcrossing
is more than offset by the extra time required for threshold downcrossing,

since a larger number of successful transmissions is required now.

Performance Results

The performance curve W*(PR) of the optimal single-threshold scheme
can now be computed using Eqs.(3.29) or (3.33), with control function (4.44)
incorporated in Fig. 3.1 to yield the necessary statistics of {Rn} (being
just s and R if (3.33) is used). The latter have been computed by a
straight forward simulation of Markov chain {Rn,n-l} under control func-

tion (4.44). The resulting performance curves are shown in Figs. 4.1-4.2




for K=12 and in Figs. 4.3-4.4 for K=9 . In both cases, we set R=12,

Average packet delay (D) vs. packet probability of rejection (Pp)

curves are shown in Figs. 4.1, 4.3. For a fixed value of ) 2=0.2,0.3,0.4

3

we note the variation of D vs. PP as the threshold F] of a single-

threshold scheme is increased from Kl=3 to KI:SH . The characteristics

of the optimal schemes as stated in Theorem 4 are well demonstrated in
these figures. Note that the minimal probability of rejection for the GRA
channel with K=12 1is equal to a very small number (measured 0) for

¢ ) . .
1=0.1,0.2 , and is PI,‘=0.004 oy A=0.3 s 1)R”:n.114 for \=0.4
\

0 ; . O ..
) = P ~ )= Z b} e - \ = y P ) - rOY\
. }R 0.002 for x=0.3 , [R 0.1 for x=0.4 , and lR is very

small for X<0.2 . (Note that, as the Markov chain simulation is run for a

For K=9

large but finite number of slots, no threshold crossings would occur for
low * values and high Kl values, thus accounting for the form of the
- i 0
curves shown for low A values.) For K=12, the minimal PR values (Pp)
AN

are attained at thresholds K]ﬁlb and K]:IZ for A=0.3 and X=0.4, re-

spectively. For K=9 , the thresholds attaining PR” are K1=18 and

K1f9 for 1=0.3 and 1=0.4 , respectively. It can be noted that a

scheme with a threshold KlfK yields an excellent D vs. PR per formance
over the whole range of network traffic intensities (including generally
any A , 0<A<0.4) yielding a rejection probability not higher than PRiO.I
We further note that a threshold value K]=V yielding a minimal probabil-
ity of rejection would not cause an average packet delay much higher than

a threshold value yielding a much higher P value. Therefore, it is
generally preferable to assign a threshold value of K]EM to the GRA
channel controller. For example, for K=12, 1=0.3, for threshold values

KJ=3,6,12 , we obtain PR values of PR=0.162, 0.062, 0.01 and delay (D)




50

values of D=22,25,29 (slots), respectively.

The associated delay (D) vs. throughput curves are shown in Figs.

; ; £ b =1
4.2, 4.4. Note that, for K=12 , the maximal throughput value of s=e

is attained at X=0.8 by a scheme with threshold K]=h , yYielding there-

fore (at this traffic value) a rejection probability value of
PP=1-LAO)'1 = 0.54 . For K=9, s=e ! is attained at 1=0.6 by a scheme
=1

with Kl=7 , vielding PR=1—(A0) = 0.39 ., It is noted that over the

ipructicul} throughput range 0<s<0.3 , the average packet delay varies
slowly, and nearly linearly, from D=13(=R+1) at s=0 , to D=20 at
s=0.2 , to only D=25 at s=0.3 , at both K=12 and K=9 GRA schemes

and any threshold value K1 , with 3(K15K

Other Control Schemes for a GRA Channel

When the GRA discipline is governed by a distributed control proce-
dure, applied over a broadcast channel, the process {Rn,n—l} many times
cannot be observed by the individual terminals. Then terminals generally
can obseirve, in each slot, only whether a successful transmission or col-
lisions have occurred. In the latter case, the terminal obtains no infor-
mation as to the number of collisions involved. Thus, the process observed
by each terminal is given as {(Sn,Cn),nzl} , where Sn denotes the number
of successful transmissions within the n-th group Bn , and Cn gives
the total number of slots in Bn experiencing collisions, and is therefore

given by

S o R (i)
c, = 121 Cy = J'Zl I(N, " 22) (4.45)

for nzl , where {Nn(J)} is given by Eq.(3.4c). Note that {(Sn,Cn),nzl}
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1s not a Markov chain. An optimal control procedure incorporating the
latter observation chain can be developed in a manner similar to that
presented above. However, due to the special character of the underlying
state sequence, we can readily make the following observations.

We note that R >2C . Within the range of acceptable packet delay
values, we further expect each collision to involve an average number of
transmissions which is very close to 2, and is lower than 3. Thus, we
should have Rn = rCn within this range, with r=2 . When Rn»rcn , the
nunber of group collisions rapidly increases and subsequently higher,
generally unacceptable, packet delay values are obtained. Therefore, es-
timating {Rn,nzl} by {ﬁn=rCn,n21} , we can employ the optimal single-
threshold scheme developed above. The latter scheme, denoted by 0 .
now uses observations of {Cn,nzl} and a threshold KZ . We thus expect
this scheme to exhibit a delay-throughput curve very close to that obtained
by the optimal scheme which uses {Rn} observations and threshold K, »
and serves as a lower-bound to the performance curve of C , with
K2=r‘lK1

Performance points for a single-threshold scheme C are shown in
Figs. 4.1-4.2 , for K=R=12 . The results completely verify the above-
mentioned observations. The optimal performance points for C are all
noted to lie on the lower-bound performance curves for the scheme using
{Rh} observations. Furthemmore, scheme C  with threshold K2=K1/2 is
noted to attain performance curves very close to those obtained by the

optimal scheme using {Rn} observations and threshold K KliM . Only

l)
when the latter scheme has utilized a threshold K1>M , we note that

scheme C would utilize threshold K2>2Kl . The latter situation, however,
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represents a range of undesirable threshold values, since schemes using
lower threshold values yield lower packet delays under the same PR values
(sce I'ig. 4.1). We thus conclude that a single-threshold scheme using
{Cn} observations operates as well as the optimal single-threshold scheme
using !Rn} observations within the acceptable range of D-P,, values.

The methods presented and used in this paper can be applied to study
a variety of other related GRA access-control disciplines. For example,
In certain applications we might wish to reject certain colliding packets
rather than new transmissions. We can thus study a GRA scheme with a 0-1
control function {Un} which uses {Rn} or {Cn} observations and re-
jects, at appropriate times, all collisions within the corresponding period.
The performance analysis for such a scheme follows that presented in
Sections 1II-1V. In particular, we can note that the associated Markov
decision problem involves now the cost function C(Rn,Un) = Rn[1+BUn]
The resulting optimal single-threshold scheme, denoted by C, , is readily
shown to have similar performance characteristics to those indicated in
Theorem 5 and Corollary 2. Performance points for a C, scheme for
4=0.3, K=R=12 are shown in Fig. 4.1. The average packet delay value here
incorporates both successful and rejected transmissions. We note that this
scheme yields lower packet delay values at higher rejection probabilities
(PRzO.OS) when compared with the previous scheme. For rejection probabili-
ties 0.014sPRsO.05 , comparable packet delays are attained by both schemes.
Scheme C2 , however, yields a minimal probability of rejection PR0=O.014,
while the previous scheme yields PRO=0.004 . The latter is thus prefer-

able at lower PR values.
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V. Conclusions

We have presented and studied Group Random-Access access-control
disciplines for a multi-access communication channel. A GRA scheme uses
only certain channel time-periods, during which some network terminals
attempt to transmit their information-bearing packets, on a random-
access basis. The channel can thus be utilized at other times to grant
access to other terminals, or other message types.

To stabilize the GRA channel, an appropriate dynamic control proce-
dure is applied. The state of the underlying channel state sequence is
observed by each terminal and subsequently, within certain periods, no
transmissions are allowed. During these periods, newly arriving packets
are thus rejected. The performance of a dynamically controlled GRA chan-
nel is characterized in terms of the average packet delay (D) and the
packet probability of rejection (PR) , or network throughput(s). The
optimal control policy, yielding the minimal average packet delay under a
prescribed rejection probability, is derived and characterized by studying
the associated Markov decision process. A Markov ratio limit theorem is
used to evaluate the packet average waiting-time function.

The performance results presented here demonstrate the excellent
delay-throughput performance of a GRA channel, over the acceptable range
of traffic intensities. We further note that a threshold value K;=M,
yielding the minimal probability of rejection, is many times a good choice.
Furthermore, if only the sequence Cn,n>1} , indicating the number of
colliding slots within a group, can be observed, as is generally the case

for distributed control broadcast channels, we have shown that a correspond-

ing single-threshold scheme € with threshold KZ:KI/Z yields a nearly
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optimal delay-throughput performance. Other control schemes are noted
to be governed by similar characteristics, and analyzed using similar
methods. As for a slotted-ALOHA (SA) random-access procedure, the GRA
scheme is shown to allow a maximal throughput of o_l . We also note
the delay-throughput characteristics of a controlled GRA channel to be
similar to those of an appropriately controlled SA channel. A GRA
access-control procedure, however, allows for a much higher degree of
dynamic and efficient utilization of a multi-access channel which
utilizes integrated random-access, reservation and fixed access-control

procedures, or utilizes the GRA scheme only to provide channel access

to certain protocol packets.
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